Some Well-Posedness and Ill-Posedness Results for the Inls Equation
نویسندگان
چکیده
منابع مشابه
Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case
We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...
متن کاملSharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case
We complete the known results on the Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in H−1(R) with a solution-map that is analytic from H−1(R) to C([0, T ];H−1(R)) whereas it is ill-posed in Hs(R), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(R) to even D′(R) at any fixed t > 0 small enough....
متن کاملWell-posedness and Ill-posedness Results for the Kadomtsev-petviashvili-i Equation
The main results of this paper are concerned with the “bad” behavior of the KP-I equation with respect to a Picard iteration scheme applied to the associated integral equation, for data in usual or anisotropic Sobolev spaces. This leads to some kind of ill-posedness of the corresponding Cauchy problem: the flow map cannot be of class C2 in any Sobolev space.
متن کاملRemark on Well-posedness and Ill-posedness for the Kdv Equation
We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space Hs,a(R), which is defined by the norm ‖φ‖Hs,a = ‖〈ξ〉s−a|ξ|a b φ‖L2 ξ . We obtain the local well-posedness in Hs,a with s ≥ max{−3/4,−a − 3/2}, −3/2 < a ≤ 0 and (s, a) 6= (−3/4,−3/4). The proof is based on Kishimoto’s work [12] which proved the sharp well-posedness in the Sobolev space H−3/4(R...
متن کاملWell-posedness and ill-posedness results for dissipative Benjamin-Ono equations
We study the Cauchy problem for the dissipative Benjamin-Ono equations ut +Huxx + |D| αu+ uux = 0 with 0 ≤ α ≤ 2. When 0 ≤ α < 1, we show the ill-posedness in Hs(R), s ∈ R, in the sense that the flow map u0 7→ u (if it exists) fails to be C 2 at the origin. For 1 < α ≤ 2, we prove the global well-posedness in Hs(R), s > −α/4. It turns out that this index is optimal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2023
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.4362627